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1. Introduction
Specifications convey critical information about a product or a 
device. A review of specifications is crucial when assessing the 
applicability of a product to an application, and ultimately to 
the decision of whether or not to purchase the product. In this 
sense, specifications indicate expected performance in addition 
to other important product characteristics. For the metrologist, 
specifications take on an expanded technical role. Using 
specifications to derive Type-B estimates for uncertainty is very 
convenient and widely exercised. In this case, the metrologist 

assumes that specifications describe product performance that 
can be maintained over time through calibration. The metrologist 
also needs to know additional details related to specifications, 
such as vital information for determining Type-B measurement 
uncertainties, or the operating conditions necessary to achieve 
the specified performance. Finally, specifications typically fall 
into one of two classifications, those that are warranted and 
those that are not, with warranted specifications being those 
that are central to the use of the product and are most likely 
the subject of periodic calibration. The warranted specifications 
define the fitness for use criteria that the manufacturer is willing 
to back with a warranty.

The process for setting specifications must attempt to meet 
the various needs of those that rely on the information the 
specifications communicate. It is important that the specifications 
accurately describe performance. An overly conservative 
specification that underestimates actual product performance 
may lead to rejecting the product for a specific application 
when, in fact, it is suitable. For the manufacturer, an overly 
aggressive specification can lead to increased manufacturing 
and warranty costs. Ideally, the specification setting process 
produces specifications that accurately describe performance, 
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Intrinsic uncertainty is uncertainty due to the incomplete 
definition of a measurand. There is, therefore, a direct 
relationship between the definition of a specification and 
uncertainty of the calibration procedure.

To illustrate this relationship, consider the following 
example found in the GUM. Assume the parameter of interest 
is the thickness of a sheet of material and that the thickness 
is measured using a micrometer. The measured result depends 
on factors such as the temperature of the material, the force 
applied by the micrometer and others. Moving the micrometer 
to a second location on the material may give a different 
measured result. That difference may be due, in part, to the non-
uniform thickness of the material. The variation in thickness of 
the material, in this case, represents an intrinsic uncertainty. 
However, the magnitude of the intrinsic uncertainty is dependent 
on the definition of the measurand. If the calibration procedure 
specified a particular location, or a series of locations for which 
multiple measurements are then averaged, the resulting intrinsic 
uncertainty would be less given a single measurement made at 
an arbitrary location.

As a second example, assume the parameter of interest is 
the level of noise sidebands on signal from a signal source. 
Whereas with the sheet of material in the previous example, 
thickness varied with location, with measurements involving 
noise, the measured value varies with time. The amount of 
variation depends upon the amount of filtering applied by the 
measuring device, or by the amount of averaging of data results. 
Again, the definition of the measurand affects the uncertainty of 
measurement even though the variation is a characteristic of, in 
this example, the signal source.

support making product comparisons, are measurable and 
are valid over variations in the external environment. Agilent 
Technologies uses the methods described in this paper when 
setting specifications for most products as they are introduced 
into the electronic measurement market.

2. Specification Definitions
Specifications, as described in this paper, relate specified 
tolerances to the expected performance of a product. 
Characterizing a sample of products, usually the first products 
built just before full-scale production of the product begins, 
provides an estimate of expected performance. Characterizing 
product performance requires a calibration procedure. 

The role of calibration, however, is much larger than 
characterizing a product to set specifications. Calibration is 
necessary for monitoring performance over time, for inter-
laboratory comparisons and for estimating product reliability. 
Additionally, the measured result from calibration may be 
used to correct or adjust the performance and is central when 
assessing conformance. Therefore, it is necessary that a product’s 
performance be measurable, either directly or indirectly, and 
the results must be repeatable and reproducible.

Repeatability and reproducibility are often a function of the 
calibration procedure, but also the laboratory environment and 
the care and experience of the person performing the calibration. 
The unit under test can also contribute to repeatability. The 
unit under test contribution may be unavoidable, but careful 
definition of specifications is necessary to minimize what the 
GUM refers to as intrinsic uncertainty1. 

Figure 1. Specification information important for designing a calibration procedure.

1 See Annex D of the GUM. [1]
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To illustrate this relationship, consider the following example found in the GUM.  Assume the 
parameter of interest is the thickness of a sheet of material and that the thickness is measured
using a micrometer.  The measured result at depends on factors such as the temperature of the 
material, the force applied by the micrometer and others.  Moving the micrometer to a second 
location on the material may give a different measured result.  That difference may be due, in 
part, to the non-uniform thickness of the material.  The variation in thickness of the material, in 
this case, represents an intrinsic uncertainty.  However, the magnitude of the intrinsic uncertainty 
is dependent of the definition of the measurand.  If the calibration procedure specified a 
particular location, or a series of locations for which multiple measurements are then averaged, 
the resulting intrinsic uncertainty would be less given a single measurement made at an arbitrary 
location.

As a second example, assume the parameter of interest is the level of noise sidebands on signal 
from a signal source.  Whereas with the sheet of material in the previous example, thickness 
varied with location, with measurements involving noise, the measured value varies with time.
The amount of variation depends upon the amount of filtering applied by the measuring device, 
or by the amount of averaging of data results.  Again, the definition of the measurand affects the 
uncertainty of measurement even though the variation is a characteristic of, in this example, the 
signal source.

Figure 1  Specification information important to design a calibration procedure. 
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When setting a specifi cation, therefore, attention must be 
given to the potential calibration procedures used to maintain 
the specifi cation over time. It is important that specifi cations 
are defi ned with suffi cient detail so that a single item, under 
more or less the same conditions, exhibits essentially the 
same performance when measured at different calibration 
laboratories. Figure 1 shows an example of a specifi cation2 with 
necessary detail for the calibration procedure.

3. Specifi cation Model
This paper relies on relating production margins, test line 
limits (TLL) and specifi cations as originally put forward by 
Read and Read. [2] Figure 2 gives a graphical representation of 
this relationship for a single sided specifi cation. For two-sided 
specifi cations, the indicated regions extend on both sides of the 
distribution.

The specifi cation model shows a test line limit set at a point 
to achieve manufacturing yield goals based upon the expected 
performance of the manufactured product. The test line limit 
is the limit used by the manufacturer for the pass/fail criteria. 
The area between the test line limit and the specifi cation is 
guard band. Guard band is a safety margin and accounts for 
possible changes in performance as a function of environmental 
conditions, expected drift during the calibration interval, 
measurement uncertainty and any additional guard band 
necessary to ensure products are within the specifi cation.

4. Test Line Limits
In order to set a test line limit and predict what the manufacturing 
yield might be, manufacturers must estimate the future 
performance of a product. Commonly, this is accomplished 
by measuring a representative sample of items. If a Gaussian 
distribution describes the sampled items’ performance, then 
a set of convenient tools exist for predicting performance and 
manufacturing yields. 

A common assumption is that product specifi cations 
describe 95 % of the population of product items. From the 
mean, µ, and standard deviation, σ, an interval of [µ - 2σ, µ + 2σ]

contains approximately 95 % of the population. However, when 
manufacturers set product specifi cations, the test line limit is 
often set wider than 2σ from the population mean. This is due 
to several factors.

The quantities µ and σ pertain to the population of product 
items. However, the data available for setting specifi cations is 
from a limited sample of pre-production or early-production 
units. Therefore, it is necessary to approximate µ and σ with the 
sample mean, 
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measuring a representative sample of items.  If a Gaussian distribution describes the sampled 
items’ performance, then a set of convenient tools exist for predicting performance and 
manufacturing yields.  

A common assumption is that product specifications describe 95% of the population of product 
items.  From the mean, 𝜇𝜇, and standard deviation, 𝜎𝜎, an interval of [𝜇𝜇 − 2𝜎𝜎, 𝜇𝜇 + 2𝜎𝜎] contains 
approximately 95% of the population.  However, when manufacturers set product specifications, 
the test line limit is often set wider than 2𝜎𝜎 from the population mean.  This is due to several 
factors.

The quantities 𝜇𝜇 and 𝜎𝜎 pertain to the population of product items.  However, the data available 
for setting specifications is from a limited sample of pre-production or early-production units.  
Therefore, it is necessary to approximate 𝜇𝜇 and 𝜎𝜎 with the sample mean, �̅�𝑥, and the sample 
standard deviation, 𝑠𝑠, determined from the sample data.  Because �̅�𝑥 and 𝑠𝑠 are approximations to 
𝜇𝜇 and 𝜎𝜎, the interval [�̅�𝑥 − 2𝑠𝑠, �̅�𝑥 + 2𝑠𝑠] may, or may not, represent 95% of the population.  This is
due to sampling error.  To address this, manufacturers can rely on tolerance intervals to set test 
line limits.

A tolerance interval is an interval that contains at least a desired proportion of a distribution at a 
stated confidence.  That is, the interval  [�̅�𝑥 − 𝑘𝑘�𝑠𝑠, �̅�𝑥 + 𝑘𝑘�𝑠𝑠]  contains at least proportion, 𝑝𝑝, of 
the population with confidence, 𝛾𝛾, where the factor, 𝑘𝑘�, is dependent on 𝑝𝑝, 𝛾𝛾, and 𝑛𝑛, the number 
of samples used to determine �̅�𝑥 and 𝑠𝑠.  For a closed interval (in the case of a two-sided 
specification), an approximate value for the k factor [3] is,

𝑘𝑘� = �
(���)������(��)�

��,���
� Eq. (1)

where

𝑘𝑘� = the two-sided k factor,
𝑧𝑧� = the inverse standard normal function for probability 𝛼𝛼 = ���

�
,

𝜒𝜒�,���
� = the inverse chi-square function for probability 𝛽𝛽 = 1 − 𝛾𝛾 with 𝑛𝑛 − 1

degrees of freedom.

For example, assuming the number of items in a sample is 30, to find the k factor for a two-sided 
tolerance interval that includes at least 95% of the population with a 98% confidence, then 
𝑧𝑧�.��� = −1.96 and 𝜒𝜒�.��,��

� = 15.57 and,

𝑘𝑘� = �(����)��� �
���(��.��)�

��.��
= 2.72 Eq. (2)

For open intervals (for one-sided specifications), an approximation to the k factor is,

, and the sample standard deviation, s, determined 
from the sample data. Because 
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measuring a representative sample of items.  If a Gaussian distribution describes the sampled 
items’ performance, then a set of convenient tools exist for predicting performance and 
manufacturing yields.  

A common assumption is that product specifications describe 95% of the population of product 
items.  From the mean, 𝜇𝜇, and standard deviation, 𝜎𝜎, an interval of [𝜇𝜇 − 2𝜎𝜎, 𝜇𝜇 + 2𝜎𝜎] contains 
approximately 95% of the population.  However, when manufacturers set product specifications, 
the test line limit is often set wider than 2𝜎𝜎 from the population mean.  This is due to several 
factors.

The quantities 𝜇𝜇 and 𝜎𝜎 pertain to the population of product items.  However, the data available 
for setting specifications is from a limited sample of pre-production or early-production units.  
Therefore, it is necessary to approximate 𝜇𝜇 and 𝜎𝜎 with the sample mean, �̅�𝑥, and the sample 
standard deviation, 𝑠𝑠, determined from the sample data.  Because �̅�𝑥 and 𝑠𝑠 are approximations to 
𝜇𝜇 and 𝜎𝜎, the interval [�̅�𝑥 − 2𝑠𝑠, �̅�𝑥 + 2𝑠𝑠] may, or may not, represent 95% of the population.  This is
due to sampling error.  To address this, manufacturers can rely on tolerance intervals to set test 
line limits.

A tolerance interval is an interval that contains at least a desired proportion of a distribution at a 
stated confidence.  That is, the interval  [�̅�𝑥 − 𝑘𝑘�𝑠𝑠, �̅�𝑥 + 𝑘𝑘�𝑠𝑠]  contains at least proportion, 𝑝𝑝, of 
the population with confidence, 𝛾𝛾, where the factor, 𝑘𝑘�, is dependent on 𝑝𝑝, 𝛾𝛾, and 𝑛𝑛, the number 
of samples used to determine �̅�𝑥 and 𝑠𝑠.  For a closed interval (in the case of a two-sided 
specification), an approximate value for the k factor [3] is,

𝑘𝑘� = �
(���)������(��)�

��,���
� Eq. (1)

where

𝑘𝑘� = the two-sided k factor,
𝑧𝑧� = the inverse standard normal function for probability 𝛼𝛼 = ���

�
,

𝜒𝜒�,���
� = the inverse chi-square function for probability 𝛽𝛽 = 1 − 𝛾𝛾 with 𝑛𝑛 − 1

degrees of freedom.

For example, assuming the number of items in a sample is 30, to find the k factor for a two-sided 
tolerance interval that includes at least 95% of the population with a 98% confidence, then 
𝑧𝑧�.��� = −1.96 and 𝜒𝜒�.��,��

� = 15.57 and,

𝑘𝑘� = �(����)��� �
���(��.��)�

��.��
= 2.72 Eq. (2)

For open intervals (for one-sided specifications), an approximation to the k factor is,

 and s are approximations to µ
and σ, the interval 
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measuring a representative sample of items.  If a Gaussian distribution describes the sampled 
items’ performance, then a set of convenient tools exist for predicting performance and 
manufacturing yields.  

A common assumption is that product specifications describe 95% of the population of product 
items.  From the mean, 𝜇𝜇, and standard deviation, 𝜎𝜎, an interval of [𝜇𝜇 − 2𝜎𝜎, 𝜇𝜇 + 2𝜎𝜎] contains 
approximately 95% of the population.  However, when manufacturers set product specifications, 
the test line limit is often set wider than 2𝜎𝜎 from the population mean.  This is due to several 
factors.

The quantities 𝜇𝜇 and 𝜎𝜎 pertain to the population of product items.  However, the data available 
for setting specifications is from a limited sample of pre-production or early-production units.  
Therefore, it is necessary to approximate 𝜇𝜇 and 𝜎𝜎 with the sample mean, �̅�𝑥, and the sample 
standard deviation, 𝑠𝑠, determined from the sample data.  Because �̅�𝑥 and 𝑠𝑠 are approximations to 
𝜇𝜇 and 𝜎𝜎, the interval [�̅�𝑥 − 2𝑠𝑠, �̅�𝑥 + 2𝑠𝑠] may, or may not, represent 95% of the population.  This is
due to sampling error.  To address this, manufacturers can rely on tolerance intervals to set test 
line limits.

A tolerance interval is an interval that contains at least a desired proportion of a distribution at a 
stated confidence.  That is, the interval  [�̅�𝑥 − 𝑘𝑘�𝑠𝑠, �̅�𝑥 + 𝑘𝑘�𝑠𝑠]  contains at least proportion, 𝑝𝑝, of 
the population with confidence, 𝛾𝛾, where the factor, 𝑘𝑘�, is dependent on 𝑝𝑝, 𝛾𝛾, and 𝑛𝑛, the number 
of samples used to determine �̅�𝑥 and 𝑠𝑠.  For a closed interval (in the case of a two-sided 
specification), an approximate value for the k factor [3] is,

𝑘𝑘� = �
(���)������(��)�

��,���
� Eq. (1)

where

𝑘𝑘� = the two-sided k factor,
𝑧𝑧� = the inverse standard normal function for probability 𝛼𝛼 = ���

�
,

𝜒𝜒�,���
� = the inverse chi-square function for probability 𝛽𝛽 = 1 − 𝛾𝛾 with 𝑛𝑛 − 1

degrees of freedom.

For example, assuming the number of items in a sample is 30, to find the k factor for a two-sided 
tolerance interval that includes at least 95% of the population with a 98% confidence, then 
𝑧𝑧�.��� = −1.96 and 𝜒𝜒�.��,��

� = 15.57 and,

𝑘𝑘� = �(����)��� �
���(��.��)�

��.��
= 2.72 Eq. (2)

For open intervals (for one-sided specifications), an approximation to the k factor is,

 may, or may not, represent 
95% of the population. This is due to sampling error. To address 
this, manufacturers can rely on tolerance intervals to set test 
line limits.

A tolerance interval is an interval that contains at least a 
desired proportion of a distribution at a stated confi dence. 
That is, the interval 
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measuring a representative sample of items.  If a Gaussian distribution describes the sampled 
items’ performance, then a set of convenient tools exist for predicting performance and 
manufacturing yields.  

A common assumption is that product specifications describe 95% of the population of product 
items.  From the mean, 𝜇𝜇, and standard deviation, 𝜎𝜎, an interval of [𝜇𝜇 − 2𝜎𝜎, 𝜇𝜇 + 2𝜎𝜎] contains 
approximately 95% of the population.  However, when manufacturers set product specifications, 
the test line limit is often set wider than 2𝜎𝜎 from the population mean.  This is due to several 
factors.

The quantities 𝜇𝜇 and 𝜎𝜎 pertain to the population of product items.  However, the data available 
for setting specifications is from a limited sample of pre-production or early-production units.  
Therefore, it is necessary to approximate 𝜇𝜇 and 𝜎𝜎 with the sample mean, �̅�𝑥, and the sample 
standard deviation, 𝑠𝑠, determined from the sample data.  Because �̅�𝑥 and 𝑠𝑠 are approximations to 
𝜇𝜇 and 𝜎𝜎, the interval [�̅�𝑥 − 2𝑠𝑠, �̅�𝑥 + 2𝑠𝑠] may, or may not, represent 95% of the population.  This is
due to sampling error.  To address this, manufacturers can rely on tolerance intervals to set test 
line limits.

A tolerance interval is an interval that contains at least a desired proportion of a distribution at a 
stated confidence.  That is, the interval  [�̅�𝑥 − 𝑘𝑘�𝑠𝑠, �̅�𝑥 + 𝑘𝑘�𝑠𝑠]  contains at least proportion, 𝑝𝑝, of 
the population with confidence, 𝛾𝛾, where the factor, 𝑘𝑘�, is dependent on 𝑝𝑝, 𝛾𝛾, and 𝑛𝑛, the number 
of samples used to determine �̅�𝑥 and 𝑠𝑠.  For a closed interval (in the case of a two-sided 
specification), an approximate value for the k factor [3] is,

𝑘𝑘� = �
(���)������(��)�

��,���
� Eq. (1)

where

𝑘𝑘� = the two-sided k factor,
𝑧𝑧� = the inverse standard normal function for probability 𝛼𝛼 = ���

�
,

𝜒𝜒�,���
� = the inverse chi-square function for probability 𝛽𝛽 = 1 − 𝛾𝛾 with 𝑛𝑛 − 1

degrees of freedom.

For example, assuming the number of items in a sample is 30, to find the k factor for a two-sided 
tolerance interval that includes at least 95% of the population with a 98% confidence, then 
𝑧𝑧�.��� = −1.96 and 𝜒𝜒�.��,��

� = 15.57 and,

𝑘𝑘� = �(����)��� �
���(��.��)�

��.��
= 2.72 Eq. (2)

For open intervals (for one-sided specifications), an approximation to the k factor is,

 contains at least 
proportion, p, of the population with confi dence, γ, where the 
factor, k2, is dependent on p, γ, and n, the number of samples 
used to determine 
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measuring a representative sample of items.  If a Gaussian distribution describes the sampled 
items’ performance, then a set of convenient tools exist for predicting performance and 
manufacturing yields.  

A common assumption is that product specifications describe 95% of the population of product 
items.  From the mean, 𝜇𝜇, and standard deviation, 𝜎𝜎, an interval of [𝜇𝜇 − 2𝜎𝜎, 𝜇𝜇 + 2𝜎𝜎] contains 
approximately 95% of the population.  However, when manufacturers set product specifications, 
the test line limit is often set wider than 2𝜎𝜎 from the population mean.  This is due to several 
factors.

The quantities 𝜇𝜇 and 𝜎𝜎 pertain to the population of product items.  However, the data available 
for setting specifications is from a limited sample of pre-production or early-production units.  
Therefore, it is necessary to approximate 𝜇𝜇 and 𝜎𝜎 with the sample mean, �̅�𝑥, and the sample 
standard deviation, 𝑠𝑠, determined from the sample data.  Because �̅�𝑥 and 𝑠𝑠 are approximations to 
𝜇𝜇 and 𝜎𝜎, the interval [�̅�𝑥 − 2𝑠𝑠, �̅�𝑥 + 2𝑠𝑠] may, or may not, represent 95% of the population.  This is
due to sampling error.  To address this, manufacturers can rely on tolerance intervals to set test 
line limits.

A tolerance interval is an interval that contains at least a desired proportion of a distribution at a 
stated confidence.  That is, the interval  [�̅�𝑥 − 𝑘𝑘�𝑠𝑠, �̅�𝑥 + 𝑘𝑘�𝑠𝑠]  contains at least proportion, 𝑝𝑝, of 
the population with confidence, 𝛾𝛾, where the factor, 𝑘𝑘�, is dependent on 𝑝𝑝, 𝛾𝛾, and 𝑛𝑛, the number 
of samples used to determine �̅�𝑥 and 𝑠𝑠.  For a closed interval (in the case of a two-sided 
specification), an approximate value for the k factor [3] is,

𝑘𝑘� = �
(���)������(��)�

��,���
� Eq. (1)

where

𝑘𝑘� = the two-sided k factor,
𝑧𝑧� = the inverse standard normal function for probability 𝛼𝛼 = ���

�
,

𝜒𝜒�,���
� = the inverse chi-square function for probability 𝛽𝛽 = 1 − 𝛾𝛾 with 𝑛𝑛 − 1

degrees of freedom.

For example, assuming the number of items in a sample is 30, to find the k factor for a two-sided 
tolerance interval that includes at least 95% of the population with a 98% confidence, then 
𝑧𝑧�.��� = −1.96 and 𝜒𝜒�.��,��

� = 15.57 and,

𝑘𝑘� = �(����)��� �
���(��.��)�

��.��
= 2.72 Eq. (2)

For open intervals (for one-sided specifications), an approximation to the k factor is,

 and s. For a closed interval (in the case 
of a two-sided specifi cation), an approximate value for the k 
factor [3] is,
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measuring a representative sample of items.  If a Gaussian distribution describes the sampled 
items’ performance, then a set of convenient tools exist for predicting performance and 
manufacturing yields.  

A common assumption is that product specifications describe 95% of the population of product 
items.  From the mean, 𝜇𝜇, and standard deviation, 𝜎𝜎, an interval of [𝜇𝜇 − 2𝜎𝜎, 𝜇𝜇 + 2𝜎𝜎] contains 
approximately 95% of the population.  However, when manufacturers set product specifications, 
the test line limit is often set wider than 2𝜎𝜎 from the population mean.  This is due to several 
factors.

The quantities 𝜇𝜇 and 𝜎𝜎 pertain to the population of product items.  However, the data available 
for setting specifications is from a limited sample of pre-production or early-production units.  
Therefore, it is necessary to approximate 𝜇𝜇 and 𝜎𝜎 with the sample mean, �̅�𝑥, and the sample 
standard deviation, 𝑠𝑠, determined from the sample data.  Because �̅�𝑥 and 𝑠𝑠 are approximations to 
𝜇𝜇 and 𝜎𝜎, the interval [�̅�𝑥 − 2𝑠𝑠, �̅�𝑥 + 2𝑠𝑠] may, or may not, represent 95% of the population.  This is
due to sampling error.  To address this, manufacturers can rely on tolerance intervals to set test 
line limits.

A tolerance interval is an interval that contains at least a desired proportion of a distribution at a 
stated confidence.  That is, the interval  [�̅�𝑥 − 𝑘𝑘�𝑠𝑠, �̅�𝑥 + 𝑘𝑘�𝑠𝑠]  contains at least proportion, 𝑝𝑝, of 
the population with confidence, 𝛾𝛾, where the factor, 𝑘𝑘�, is dependent on 𝑝𝑝, 𝛾𝛾, and 𝑛𝑛, the number 
of samples used to determine �̅�𝑥 and 𝑠𝑠.  For a closed interval (in the case of a two-sided 
specification), an approximate value for the k factor [3] is,
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For example, assuming the number of items in a sample is 30, to find the k factor for a two-sided 
tolerance interval that includes at least 95% of the population with a 98% confidence, then 
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� = 15.57 and,
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measuring a representative sample of items.  If a Gaussian distribution describes the sampled 
items’ performance, then a set of convenient tools exist for predicting performance and 
manufacturing yields.  

A common assumption is that product specifications describe 95% of the population of product 
items.  From the mean, 𝜇𝜇, and standard deviation, 𝜎𝜎, an interval of [𝜇𝜇 − 2𝜎𝜎, 𝜇𝜇 + 2𝜎𝜎] contains 
approximately 95% of the population.  However, when manufacturers set product specifications, 
the test line limit is often set wider than 2𝜎𝜎 from the population mean.  This is due to several 
factors.

The quantities 𝜇𝜇 and 𝜎𝜎 pertain to the population of product items.  However, the data available 
for setting specifications is from a limited sample of pre-production or early-production units.  
Therefore, it is necessary to approximate 𝜇𝜇 and 𝜎𝜎 with the sample mean, �̅�𝑥, and the sample 
standard deviation, 𝑠𝑠, determined from the sample data.  Because �̅�𝑥 and 𝑠𝑠 are approximations to 
𝜇𝜇 and 𝜎𝜎, the interval [�̅�𝑥 − 2𝑠𝑠, �̅�𝑥 + 2𝑠𝑠] may, or may not, represent 95% of the population.  This is
due to sampling error.  To address this, manufacturers can rely on tolerance intervals to set test 
line limits.

A tolerance interval is an interval that contains at least a desired proportion of a distribution at a 
stated confidence.  That is, the interval  [�̅�𝑥 − 𝑘𝑘�𝑠𝑠, �̅�𝑥 + 𝑘𝑘�𝑠𝑠]  contains at least proportion, 𝑝𝑝, of 
the population with confidence, 𝛾𝛾, where the factor, 𝑘𝑘�, is dependent on 𝑝𝑝, 𝛾𝛾, and 𝑛𝑛, the number 
of samples used to determine �̅�𝑥 and 𝑠𝑠.  For a closed interval (in the case of a two-sided 
specification), an approximate value for the k factor [3] is,
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For example, assuming the number of items in a sample is 30, to find the k factor for a two-sided 
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measuring a representative sample of items.  If a Gaussian distribution describes the sampled 
items’ performance, then a set of convenient tools exist for predicting performance and 
manufacturing yields.  

A common assumption is that product specifications describe 95% of the population of product 
items.  From the mean, 𝜇𝜇, and standard deviation, 𝜎𝜎, an interval of [𝜇𝜇 − 2𝜎𝜎, 𝜇𝜇 + 2𝜎𝜎] contains 
approximately 95% of the population.  However, when manufacturers set product specifications, 
the test line limit is often set wider than 2𝜎𝜎 from the population mean.  This is due to several 
factors.

The quantities 𝜇𝜇 and 𝜎𝜎 pertain to the population of product items.  However, the data available 
for setting specifications is from a limited sample of pre-production or early-production units.  
Therefore, it is necessary to approximate 𝜇𝜇 and 𝜎𝜎 with the sample mean, �̅�𝑥, and the sample 
standard deviation, 𝑠𝑠, determined from the sample data.  Because �̅�𝑥 and 𝑠𝑠 are approximations to 
𝜇𝜇 and 𝜎𝜎, the interval [�̅�𝑥 − 2𝑠𝑠, �̅�𝑥 + 2𝑠𝑠] may, or may not, represent 95% of the population.  This is
due to sampling error.  To address this, manufacturers can rely on tolerance intervals to set test 
line limits.

A tolerance interval is an interval that contains at least a desired proportion of a distribution at a 
stated confidence.  That is, the interval  [�̅�𝑥 − 𝑘𝑘�𝑠𝑠, �̅�𝑥 + 𝑘𝑘�𝑠𝑠]  contains at least proportion, 𝑝𝑝, of 
the population with confidence, 𝛾𝛾, where the factor, 𝑘𝑘�, is dependent on 𝑝𝑝, 𝛾𝛾, and 𝑛𝑛, the number 
of samples used to determine �̅�𝑥 and 𝑠𝑠.  For a closed interval (in the case of a two-sided 
specification), an approximate value for the k factor [3] is,

𝑘𝑘� = �
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� Eq. (1)

where

𝑘𝑘� = the two-sided k factor,
𝑧𝑧� = the inverse standard normal function for probability 𝛼𝛼 = ���
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,

𝜒𝜒�,���
� = the inverse chi-square function for probability 𝛽𝛽 = 1 − 𝛾𝛾 with 𝑛𝑛 − 1

degrees of freedom.

For example, assuming the number of items in a sample is 30, to find the k factor for a two-sided 
tolerance interval that includes at least 95% of the population with a 98% confidence, then 
𝑧𝑧�.��� = −1.96 and 𝜒𝜒�.��,��

� = 15.57 and,
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measuring a representative sample of items.  If a Gaussian distribution describes the sampled 
items’ performance, then a set of convenient tools exist for predicting performance and 
manufacturing yields.  

A common assumption is that product specifications describe 95% of the population of product 
items.  From the mean, 𝜇𝜇, and standard deviation, 𝜎𝜎, an interval of [𝜇𝜇 − 2𝜎𝜎, 𝜇𝜇 + 2𝜎𝜎] contains 
approximately 95% of the population.  However, when manufacturers set product specifications, 
the test line limit is often set wider than 2𝜎𝜎 from the population mean.  This is due to several 
factors.

The quantities 𝜇𝜇 and 𝜎𝜎 pertain to the population of product items.  However, the data available 
for setting specifications is from a limited sample of pre-production or early-production units.  
Therefore, it is necessary to approximate 𝜇𝜇 and 𝜎𝜎 with the sample mean, �̅�𝑥, and the sample 
standard deviation, 𝑠𝑠, determined from the sample data.  Because �̅�𝑥 and 𝑠𝑠 are approximations to 
𝜇𝜇 and 𝜎𝜎, the interval [�̅�𝑥 − 2𝑠𝑠, �̅�𝑥 + 2𝑠𝑠] may, or may not, represent 95% of the population.  This is
due to sampling error.  To address this, manufacturers can rely on tolerance intervals to set test 
line limits.

A tolerance interval is an interval that contains at least a desired proportion of a distribution at a 
stated confidence.  That is, the interval  [�̅�𝑥 − 𝑘𝑘�𝑠𝑠, �̅�𝑥 + 𝑘𝑘�𝑠𝑠]  contains at least proportion, 𝑝𝑝, of 
the population with confidence, 𝛾𝛾, where the factor, 𝑘𝑘�, is dependent on 𝑝𝑝, 𝛾𝛾, and 𝑛𝑛, the number 
of samples used to determine �̅�𝑥 and 𝑠𝑠.  For a closed interval (in the case of a two-sided 
specification), an approximate value for the k factor [3] is,

𝑘𝑘� = �
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where

𝑘𝑘� = the two-sided k factor,
𝑧𝑧� = the inverse standard normal function for probability 𝛼𝛼 = ���
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,

𝜒𝜒�,���
� = the inverse chi-square function for probability 𝛽𝛽 = 1 − 𝛾𝛾 with 𝑛𝑛 − 1

degrees of freedom.

For example, assuming the number of items in a sample is 30, to find the k factor for a two-sided 
tolerance interval that includes at least 95% of the population with a 98% confidence, then 
𝑧𝑧�.��� = −1.96 and 𝜒𝜒�.��,��

� = 15.57 and,

𝑘𝑘� = �(����)��� �
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= 2.72 Eq. (2)

For open intervals (for one-sided specifications), an approximation to the k factor is,
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measuring a representative sample of items.  If a Gaussian distribution describes the sampled 
items’ performance, then a set of convenient tools exist for predicting performance and 
manufacturing yields.  

A common assumption is that product specifications describe 95% of the population of product 
items.  From the mean, 𝜇𝜇, and standard deviation, 𝜎𝜎, an interval of [𝜇𝜇 − 2𝜎𝜎, 𝜇𝜇 + 2𝜎𝜎] contains 
approximately 95% of the population.  However, when manufacturers set product specifications, 
the test line limit is often set wider than 2𝜎𝜎 from the population mean.  This is due to several 
factors.

The quantities 𝜇𝜇 and 𝜎𝜎 pertain to the population of product items.  However, the data available 
for setting specifications is from a limited sample of pre-production or early-production units.  
Therefore, it is necessary to approximate 𝜇𝜇 and 𝜎𝜎 with the sample mean, �̅�𝑥, and the sample 
standard deviation, 𝑠𝑠, determined from the sample data.  Because �̅�𝑥 and 𝑠𝑠 are approximations to 
𝜇𝜇 and 𝜎𝜎, the interval [�̅�𝑥 − 2𝑠𝑠, �̅�𝑥 + 2𝑠𝑠] may, or may not, represent 95% of the population.  This is
due to sampling error.  To address this, manufacturers can rely on tolerance intervals to set test 
line limits.

A tolerance interval is an interval that contains at least a desired proportion of a distribution at a 
stated confidence.  That is, the interval  [�̅�𝑥 − 𝑘𝑘�𝑠𝑠, �̅�𝑥 + 𝑘𝑘�𝑠𝑠]  contains at least proportion, 𝑝𝑝, of 
the population with confidence, 𝛾𝛾, where the factor, 𝑘𝑘�, is dependent on 𝑝𝑝, 𝛾𝛾, and 𝑛𝑛, the number 
of samples used to determine �̅�𝑥 and 𝑠𝑠.  For a closed interval (in the case of a two-sided 
specification), an approximate value for the k factor [3] is,

𝑘𝑘� = �
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� Eq. (1)

where

𝑘𝑘� = the two-sided k factor,
𝑧𝑧� = the inverse standard normal function for probability 𝛼𝛼 = ���

�
,

𝜒𝜒�,���
� = the inverse chi-square function for probability 𝛽𝛽 = 1 − 𝛾𝛾 with 𝑛𝑛 − 1

degrees of freedom.

For example, assuming the number of items in a sample is 30, to find the k factor for a two-sided 
tolerance interval that includes at least 95% of the population with a 98% confidence, then 
𝑧𝑧�.��� = −1.96 and 𝜒𝜒�.��,��

� = 15.57 and,

𝑘𝑘� = �(����)��� �
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= 2.72 Eq. (2)

For open intervals (for one-sided specifications), an approximation to the k factor is,
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measuring a representative sample of items.  If a Gaussian distribution describes the sampled 
items’ performance, then a set of convenient tools exist for predicting performance and 
manufacturing yields.  

A common assumption is that product specifications describe 95% of the population of product 
items.  From the mean, 𝜇𝜇, and standard deviation, 𝜎𝜎, an interval of [𝜇𝜇 − 2𝜎𝜎, 𝜇𝜇 + 2𝜎𝜎] contains 
approximately 95% of the population.  However, when manufacturers set product specifications, 
the test line limit is often set wider than 2𝜎𝜎 from the population mean.  This is due to several 
factors.

The quantities 𝜇𝜇 and 𝜎𝜎 pertain to the population of product items.  However, the data available 
for setting specifications is from a limited sample of pre-production or early-production units.  
Therefore, it is necessary to approximate 𝜇𝜇 and 𝜎𝜎 with the sample mean, �̅�𝑥, and the sample 
standard deviation, 𝑠𝑠, determined from the sample data.  Because �̅�𝑥 and 𝑠𝑠 are approximations to 
𝜇𝜇 and 𝜎𝜎, the interval [�̅�𝑥 − 2𝑠𝑠, �̅�𝑥 + 2𝑠𝑠] may, or may not, represent 95% of the population.  This is
due to sampling error.  To address this, manufacturers can rely on tolerance intervals to set test 
line limits.

A tolerance interval is an interval that contains at least a desired proportion of a distribution at a 
stated confidence.  That is, the interval  [�̅�𝑥 − 𝑘𝑘�𝑠𝑠, �̅�𝑥 + 𝑘𝑘�𝑠𝑠]  contains at least proportion, 𝑝𝑝, of 
the population with confidence, 𝛾𝛾, where the factor, 𝑘𝑘�, is dependent on 𝑝𝑝, 𝛾𝛾, and 𝑛𝑛, the number 
of samples used to determine �̅�𝑥 and 𝑠𝑠.  For a closed interval (in the case of a two-sided 
specification), an approximate value for the k factor [3] is,

𝑘𝑘� = �
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� Eq. (1)

where
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,

𝜒𝜒�,���
� = the inverse chi-square function for probability 𝛽𝛽 = 1 − 𝛾𝛾 with 𝑛𝑛 − 1

degrees of freedom.

For example, assuming the number of items in a sample is 30, to find the k factor for a two-sided 
tolerance interval that includes at least 95% of the population with a 98% confidence, then 
𝑧𝑧�.��� = −1.96 and 𝜒𝜒�.��,��

� = 15.57 and,

𝑘𝑘� = �(����)��� �
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= 2.72 Eq. (2)

For open intervals (for one-sided specifications), an approximation to the k factor is,
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measuring a representative sample of items.  If a Gaussian distribution describes the sampled 
items’ performance, then a set of convenient tools exist for predicting performance and 
manufacturing yields.  

A common assumption is that product specifications describe 95% of the population of product 
items.  From the mean, 𝜇𝜇, and standard deviation, 𝜎𝜎, an interval of [𝜇𝜇 − 2𝜎𝜎, 𝜇𝜇 + 2𝜎𝜎] contains 
approximately 95% of the population.  However, when manufacturers set product specifications, 
the test line limit is often set wider than 2𝜎𝜎 from the population mean.  This is due to several 
factors.

The quantities 𝜇𝜇 and 𝜎𝜎 pertain to the population of product items.  However, the data available 
for setting specifications is from a limited sample of pre-production or early-production units.  
Therefore, it is necessary to approximate 𝜇𝜇 and 𝜎𝜎 with the sample mean, �̅�𝑥, and the sample 
standard deviation, 𝑠𝑠, determined from the sample data.  Because �̅�𝑥 and 𝑠𝑠 are approximations to 
𝜇𝜇 and 𝜎𝜎, the interval [�̅�𝑥 − 2𝑠𝑠, �̅�𝑥 + 2𝑠𝑠] may, or may not, represent 95% of the population.  This is
due to sampling error.  To address this, manufacturers can rely on tolerance intervals to set test 
line limits.

A tolerance interval is an interval that contains at least a desired proportion of a distribution at a 
stated confidence.  That is, the interval  [�̅�𝑥 − 𝑘𝑘�𝑠𝑠, �̅�𝑥 + 𝑘𝑘�𝑠𝑠]  contains at least proportion, 𝑝𝑝, of 
the population with confidence, 𝛾𝛾, where the factor, 𝑘𝑘�, is dependent on 𝑝𝑝, 𝛾𝛾, and 𝑛𝑛, the number 
of samples used to determine �̅�𝑥 and 𝑠𝑠.  For a closed interval (in the case of a two-sided 
specification), an approximate value for the k factor [3] is,

𝑘𝑘� = �
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� = the inverse chi-square function for probability 𝛽𝛽 = 1 − 𝛾𝛾 with 𝑛𝑛 − 1

degrees of freedom.

For example, assuming the number of items in a sample is 30, to find the k factor for a two-sided 
tolerance interval that includes at least 95% of the population with a 98% confidence, then 
𝑧𝑧�.��� = −1.96 and 𝜒𝜒�.��,��

� = 15.57 and,
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For open intervals (for one-sided specifications), an approximation to the k factor is,
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measuring a representative sample of items.  If a Gaussian distribution describes the sampled 
items’ performance, then a set of convenient tools exist for predicting performance and 
manufacturing yields.  

A common assumption is that product specifications describe 95% of the population of product 
items.  From the mean, 𝜇𝜇, and standard deviation, 𝜎𝜎, an interval of [𝜇𝜇 − 2𝜎𝜎, 𝜇𝜇 + 2𝜎𝜎] contains 
approximately 95% of the population.  However, when manufacturers set product specifications, 
the test line limit is often set wider than 2𝜎𝜎 from the population mean.  This is due to several 
factors.

The quantities 𝜇𝜇 and 𝜎𝜎 pertain to the population of product items.  However, the data available 
for setting specifications is from a limited sample of pre-production or early-production units.  
Therefore, it is necessary to approximate 𝜇𝜇 and 𝜎𝜎 with the sample mean, �̅�𝑥, and the sample 
standard deviation, 𝑠𝑠, determined from the sample data.  Because �̅�𝑥 and 𝑠𝑠 are approximations to 
𝜇𝜇 and 𝜎𝜎, the interval [�̅�𝑥 − 2𝑠𝑠, �̅�𝑥 + 2𝑠𝑠] may, or may not, represent 95% of the population.  This is
due to sampling error.  To address this, manufacturers can rely on tolerance intervals to set test 
line limits.

A tolerance interval is an interval that contains at least a desired proportion of a distribution at a 
stated confidence.  That is, the interval  [�̅�𝑥 − 𝑘𝑘�𝑠𝑠, �̅�𝑥 + 𝑘𝑘�𝑠𝑠]  contains at least proportion, 𝑝𝑝, of 
the population with confidence, 𝛾𝛾, where the factor, 𝑘𝑘�, is dependent on 𝑝𝑝, 𝛾𝛾, and 𝑛𝑛, the number 
of samples used to determine �̅�𝑥 and 𝑠𝑠.  For a closed interval (in the case of a two-sided 
specification), an approximate value for the k factor [3] is,

𝑘𝑘� = �
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where

𝑘𝑘� = the two-sided k factor,
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,

𝜒𝜒�,���
� = the inverse chi-square function for probability 𝛽𝛽 = 1 − 𝛾𝛾 with 𝑛𝑛 − 1

degrees of freedom.

For example, assuming the number of items in a sample is 30, to find the k factor for a two-sided 
tolerance interval that includes at least 95% of the population with a 98% confidence, then 
𝑧𝑧�.��� = −1.96 and 𝜒𝜒�.��,��

� = 15.57 and,

𝑘𝑘� = �(����)��� �
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For open intervals (for one-sided specifications), an approximation to the k factor is,
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measuring a representative sample of items.  If a Gaussian distribution describes the sampled 
items’ performance, then a set of convenient tools exist for predicting performance and 
manufacturing yields.  

A common assumption is that product specifications describe 95% of the population of product 
items.  From the mean, 𝜇𝜇, and standard deviation, 𝜎𝜎, an interval of [𝜇𝜇 − 2𝜎𝜎, 𝜇𝜇 + 2𝜎𝜎] contains 
approximately 95% of the population.  However, when manufacturers set product specifications, 
the test line limit is often set wider than 2𝜎𝜎 from the population mean.  This is due to several 
factors.

The quantities 𝜇𝜇 and 𝜎𝜎 pertain to the population of product items.  However, the data available 
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When setting a specification, therefore, attention must be given to the potential calibration 
procedures used to maintain the specification over time.  It is important that specifications are 
defined with sufficient detail so that a single item, under more less the same conditions, exhibits 
essentially the same performance when measured at different calibration laboratories.  Figure 1
shows an example of a specification2 with necessary detail for the calibration procedure.

3. Specification Model
This paper relies on the relating production margins, test line limits (TLL) and specifications as
originally put forward by Read and Read [2].  Figure 1 gives a graphical representation of this
relationship for a single sided specification.  For two-sided specifications, the indicated regions 
extend on both sides of the distribution.

The specification model shows a test line limit set at a point to achieve manufacturing yield goals
based upon the expected performance of the manufactured product.  The test line limit is the 
limit used by the manufacturer for the pass/fail criteria.  The area between the test line limit and 
the specification is guard band.  Guard band is a safety margin and accounts for possible changes 
in performance as a function of environmental conditions, expected drift during the calibration 
interval, measurement uncertainty and any additional guard band necessary to ensure products 
are within the specification.

4. Test Line Limits
In order to set a test line limit and predict what the manufacturing yield might be, manufacturers 
must estimate the future performance of a product.  Commonly, this is accomplished by 
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measuring a representative sample of items.  If a Gaussian distribution describes the sampled 
items’ performance, then a set of convenient tools exist for predicting performance and 
manufacturing yields.  
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approximately 95% of the population.  However, when manufacturers set product specifications, 
the test line limit is often set wider than 2𝜎𝜎 from the population mean.  This is due to several 
factors.
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𝜇𝜇 and 𝜎𝜎, the interval [�̅�𝑥 − 2𝑠𝑠, �̅�𝑥 + 2𝑠𝑠] may, or may not, represent 95% of the population.  This is
due to sampling error.  To address this, manufacturers can rely on tolerance intervals to set test 
line limits.
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of samples used to determine �̅�𝑥 and 𝑠𝑠.  For a closed interval (in the case of a two-sided 
specification), an approximate value for the k factor [3] is,
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To achieve desired manufacturing yield goals, the test line limit is set, at a minimum, so that
𝑇𝑇𝑇𝑇𝑇𝑇 = �̅�𝑥 ± 𝑘𝑘𝑘𝑘, where 𝑘𝑘 is set by either equation (1) or equation (3) for either two-sided or one-
sided specifications.  Equations (1) and (3) rely on data from a Gaussian distribution.  Therefore, 
it is necessary to verify the Gaussian distribution assumption3.

When choosing tolerance interval probability, 𝑝𝑝, and confidence, 𝛾𝛾, it is necessary to consider 
several factors.  Setting the confidence for a tolerance interval establishes the risk that the test 
line limit will contain less than the desired proportion of the population of manufactured product 
items.  To illustrate, assume for a moment that a manufacturer produces a multi-parameter 
product that requires 50 independent measurements.  If all 50 test line limits have been set with a 
98% confidence for the tolerance interval, it is expected that one of the test line limits is set too 
tight (i.e., 98% of the 50 test line limits).  The manufacture has one of several options in this 
case.  The manufacturer may accept a lower production yield, loosen the test line limit and the 
corresponding specification, or modify the product or relevant processes.  The tolerance interval 
confidence sets the risk that a manufacturer might need to take one of these actions.

For choosing the tolerance interval probability, a generally accepted minimum value is 95%.  
However, manufacturers may choose a probability other than 95% for different reasons.  
Consider again a multi-parameter product. Manufacturers wish to have high yields for the entire 
product so that the yield considering all parameters meets the respective test line limits.  If the 
product parameters are statistically independent, the overall yield, in this case, is the product of 
the probability for each parameter.  For a product with just three independent parameters, each 
with a test limit intended to give 95% probability, the product would only have a (95%)� or
85.7% chance of meeting all test line limits, which is perhaps unacceptable to the manufacturer.  
For this reason, manufacturers select tolerance interval probabilities greater than 95% so that the 
overall probability is acceptable.  Furthermore, not all test line limits are necessarily based on the 
same probability.  If a multi-parameter product has some parameters that perform very well with 
respect to market requirements, manufactures may choose to set wide test line limits for those 
parameters to virtually remove the possibility that they will present yield problems in
manufacturing, and yet, still meet customer requirements.

                                                            
3 Histograms and quantile-quantile plots provide a graphical method for assessing the Gaussian assumption.  
Numerical tests, such as the D'Agostino's K-squared test or the Shapiro-Wilk test, are valuable and can be built into 
software for automating the analysis tasks. 
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Characterizing change in performance due to environmental conditions requires 
taking measurements while exposing product items to each environment. The 
k factor, in this example, is the same for the samples taken from the test environment 
and the worst-case environment. This implies that the proportion, confi dence and, 
importantly, the number of samples from each environment are the same. Including 
Δenv as a component of the guard band ensures that products meet all specifi cations 
over the full range of environmental conditions.

6. Drift
So far, this discussion assumes the change in performance due to environmental 
conditions to be non-permanent. That is, when returned to the test environment, 
product performance is the same as it was prior to exposing the product to the 
worst-case environment. However, that is not necessarily the case. Stress due to 
environmental change, as well as everyday use, transport, aging and other factors 
may induce small changes in performance that accumulate over time. In other 
words, products drift. The effect of drift is that from the time of manufacture to the 
end of the initial calibration interval, it is likely that performance has shifted. This 
is illustrated in Fig. 4.

Similar to the impact of environmental conditions, a population of product 
items also experiences a shift in the mean, a change in the standard deviation, 
or both, due to the mechanisms associated with drift. Normally, drift is managed 
by setting an end-of-period reliability target, that is, the likelihood that a product 
is in tolerance (within specifi cation) at the end of the calibration interval, and 
adjusting the calibration interval as necessary to achieve the target. Evaluation of 
the calibration interval is possible as calibration history builds. To ensure products 
meet specifi cation over the initial calibration interval, manufacturers may include 

an additional guard band between the test 
line limit and the specifi cation. It is possible 
to determine a value for Δdrift (shown in Fig. 
4) as was done as for Δenv in equation (4). 
However, this may not be practical due the 
slow, accumulative characteristics associated 
with drift. For that reason, to estimate Δdrift, 
manufactures may alternatively rely on 
accelerated aging tests, reliability data from 
similar products, engineering analysis or 
reliability models.

7. Measurement Uncertainty
Measurement uncertainty of the manufacturing
test process adds variability to the measured test 
results. Measurement uncertainty also affects
the process for setting the test line limits. 
The test line limit setting process attempts 
to characterize product-to-product variation. 
However, depending upon the extent of the 
data collecting exercise4, the observed data 
from a sample of product items will also 
include variation from measurement uncer-
tainty. The test line limits, when set based on 
observed data, account for all variation present 
while collecting data, including measurement 
uncertainty. Nonetheless, manufacturers may 
add additional guard band due to measure-
ment uncertainty. Doing so allows margin 
for accommodating various guard banding 
requirements that may be applied during 
recalibration of a product.

For example, many calibration laboratories 
adhere to ILAC-G8 [4], when reporting 
compliance to specifi cations. In this instance, 
compliance is stated when the measured 
value, plus the 95 % expanded uncertainty, 
does not extend past the specifi cation. When 
the measured value plus the 95 % expanded 
uncertainty does extend past the specifi cation, 
compliance is not stated. When possible, the 
customer expectation is that the product 
can be adjusted so that compliance can be 
stated. Including guard band to account 
for measurement uncertainty ensures that 
it is possible to adjust a product to meet 
specifi cation, even when assessing compliance 
as stated by ILAC-G8.

8. Guard Band
The total guard band between the test line 
limit and the specifi cations is simply the sum 
of the individual guard band components 
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is the same for the samples taken from the test environment and the worst-case environment.  
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experiences a shift in the mean, a change in the standard deviation, or both, due to the 
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reliability target, that is, the likelihood that a product is in tolerance (within specification) at the 
end of the calibration interval, and adjusting the calibration interval as necessary to achieve the 
target.  Evaluation of the calibration interval is possible as calibration history builds.  To ensure 
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a value for Δ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (shown in Figure 4) as was done as for ∆𝑒𝑒𝑒𝑒𝑒𝑒 in equation (4).  However, this 
may not be practical due the slow, accumulative characteristics associated with drift.  For that 
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reliability data from similar products, engineering analysis or reliability models.

As 
Manufactured 

End of Initial 
Calibration 

Interval 

Specification Δ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Figure 4. Changes in the population due to drift.

4 Some sources of uncertainty are constant during the 
data collecting exercise, such as the uncertainty of a 
correction that is applied equally to all measurements.  
An uncertainty such as this does not contribute to the 
observed variation. 
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for environmental factors, drift, measurement uncertainty and 
customer guard band. For example,
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7. Measurement Uncertainty
Measurement uncertainty of the manufacturing test process adds variability to the measured test 
results. Measurement uncertainty also affects the process for setting the test line limits.  The test 
line limit setting process attempts to characterize product-to-product variation.  However, 
depending upon the extent of the data collecting exercise4, the observed data from a sample of 
product items will also include variation from measurement uncertainty.  The test line limits, 
when set based on observed data, account for all variation present while collecting data, 
including measurement uncertainty.  Nonetheless, manufacturers may add additional guard band 
due to measurement uncertainty.  Doing so allows margin for accommodating various guard 
banding requirements that may be applied during recalibration of a product.

For example, many calibration laboratories adhere to ILAC-G8 [4], when reporting compliance 
to specifications.  In this instance, compliance is stated when the measured value, plus the 95% 
expanded uncertainty, does not extend past the specification.  When the measured value plus the 
95% expanded uncertainty does extend past the specification, compliance is not stated. When 
possible, the customer expectation is that the product can be adjusted so that compliance can be 
stated.  Including guard band to account for measurement uncertainty ensures that it is possible 
to adjust a product to meet specification, even when assessing compliance as stated by ILAC-G8.

8. Guard Band
The total guard band between the test line limit and the specifications is the sum of the individual
guard band components for environmental factors, drift, measurement uncertainty and customer 
guard band.  For example,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑡𝑡𝑡𝑡𝑡𝑡 + ∆𝑠𝑠𝑒𝑒𝑒𝑒 + Δ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 + Δ𝑢𝑢𝑒𝑒𝑠𝑠 + 𝑔𝑔𝑔𝑔��������      Eq. (5) 

where Δ𝑢𝑢𝑒𝑒𝑠𝑠 is the measurement uncertainty component of guard band and 𝑔𝑔𝑔𝑔𝑠𝑠𝑢𝑢𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑑𝑑 is customer 
guard band.  Customer guard band is any additional guard band the manufacture may deem 
convenient or necessary.  For example, consider a product in which the performance varies 
somewhat over a range conditions, yet, for clarity, the manufacturer chooses a single value for 
the specification over the entire range.  This, in effect, adds guard band to the better performing 
regions in order to produce the desired specification.  For a second example, consider a 
manufacturing test procedure that achieves a better measurement uncertainty than the procedure 
used for re-calibration.  In this case, an added amount of guard band may be necessary to ensure 
end-of-period reliability objectives.

Note that the terms Δ𝑠𝑠𝑒𝑒𝑒𝑒, Δ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡, Δ𝑢𝑢𝑒𝑒𝑠𝑠 and 𝑔𝑔𝑔𝑔𝑠𝑠𝑢𝑢𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑑𝑑 are not standard deviations.  Therefore, 
they cannot be combined in a root-sum-square fashion.  Equation (5) relates the test line limit, 
                                                            
4 Some sources of uncertainty are constant during the data collecting exercise, such as the uncertainty of a 
correction that is applied equally to all measurements.  An uncertainty such as this does not contribute to the 
observed variation.  

, (5)

where Δunc is the measurement uncertainty component of 
guard band and 

2010 NCSL International Workshop and Symposium
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Measurement uncertainty of the manufacturing test process adds variability to the measured test 
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the specification over the entire range.  This, in effect, adds guard band to the better performing 
regions in order to produce the desired specification.  For a second example, consider a 
manufacturing test procedure that achieves a better measurement uncertainty than the procedure 
used for re-calibration.  In this case, an added amount of guard band may be necessary to ensure 
end-of-period reliability objectives.
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7. Measurement Uncertainty
Measurement uncertainty of the manufacturing test process adds variability to the measured test 
results. Measurement uncertainty also affects the process for setting the test line limits.  The test 
line limit setting process attempts to characterize product-to-product variation.  However, 
depending upon the extent of the data collecting exercise4, the observed data from a sample of 
product items will also include variation from measurement uncertainty.  The test line limits, 
when set based on observed data, account for all variation present while collecting data, 
including measurement uncertainty.  Nonetheless, manufacturers may add additional guard band 
due to measurement uncertainty.  Doing so allows margin for accommodating various guard 
banding requirements that may be applied during recalibration of a product.

For example, many calibration laboratories adhere to ILAC-G8 [4], when reporting compliance 
to specifications.  In this instance, compliance is stated when the measured value, plus the 95% 
expanded uncertainty, does not extend past the specification.  When the measured value plus the 
95% expanded uncertainty does extend past the specification, compliance is not stated. When 
possible, the customer expectation is that the product can be adjusted so that compliance can be 
stated.  Including guard band to account for measurement uncertainty ensures that it is possible 
to adjust a product to meet specification, even when assessing compliance as stated by ILAC-G8.

8. Guard Band
The total guard band between the test line limit and the specifications is the sum of the individual
guard band components for environmental factors, drift, measurement uncertainty and customer 
guard band.  For example,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑡𝑡𝑡𝑡𝑡𝑡 + ∆𝑠𝑠𝑒𝑒𝑒𝑒 + Δ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 + Δ𝑢𝑢𝑒𝑒𝑠𝑠 + 𝑔𝑔𝑔𝑔��������      Eq. (5) 

where Δ𝑢𝑢𝑒𝑒𝑠𝑠 is the measurement uncertainty component of guard band and 𝑔𝑔𝑔𝑔𝑠𝑠𝑢𝑢𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑑𝑑 is customer 
guard band.  Customer guard band is any additional guard band the manufacture may deem 
convenient or necessary.  For example, consider a product in which the performance varies 
somewhat over a range conditions, yet, for clarity, the manufacturer chooses a single value for 
the specification over the entire range.  This, in effect, adds guard band to the better performing 
regions in order to produce the desired specification.  For a second example, consider a 
manufacturing test procedure that achieves a better measurement uncertainty than the procedure 
used for re-calibration.  In this case, an added amount of guard band may be necessary to ensure 
end-of-period reliability objectives.

Note that the terms Δ𝑠𝑠𝑒𝑒𝑒𝑒, Δ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡, Δ𝑢𝑢𝑒𝑒𝑠𝑠 and 𝑔𝑔𝑔𝑔𝑠𝑠𝑢𝑢𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑑𝑑 are not standard deviations.  Therefore, 
they cannot be combined in a root-sum-square fashion.  Equation (5) relates the test line limit, 
                                                            
4 Some sources of uncertainty are constant during the data collecting exercise, such as the uncertainty of a 
correction that is applied equally to all measurements.  An uncertainty such as this does not contribute to the 
observed variation.  

 are not standard 
deviations. Therefore, they cannot be combined in a root-sum-
square fashion.

The customer guard band is any additional guard band the 
manufacture may deem convenient or necessary. For example, 
consider a product in which the performance varies somewhat 
over a range of conditions, yet, for clarity, the manufacturer 
chooses a single value for the specification over the entire range. 
This, in effect, adds guard band to the better performing regions 
in order to produce the desired specification. Consider as a 
second example where a manufacturing test procedure achieves 
a better measurement uncertainty than the procedure used for 
re-calibration. In this case, an added amount of guard band may 
be necessary to ensure end-of-period reliability objectives.

Equation (5) relates the test line limit, which is set based on 
product performance, to the specification for a product. Setting 
the test line limit with the flexibility of choosing tolerance interval 
proportion, confidence and sample size, allows the manufacturer 
to balance production yield and production costs with quoted 
performance and marketability of the product.

9.  Using Specifications for Type-B Evaluation of 
Standard Uncertainty

The GUM provides guidance for evaluation of standard uncertainty 
and specifically includes manufacturer’s specifications as a source 
of information for Type-B estimates. Relying on manufacturer 
specifications for determining measurement uncertainty is very 
convenient. That is, assuming a product meets its specifications 
(an assumption verified through calibration) and developing 
uncertainty based on those specifications is easily manageable. 
For this reason, it is common.

To evaluate a Type-B uncertainty, the GUM gives specific 
advice5 when an uncertainty is quoted at a given level of 
confidence. In this instance, an assumption can be made that 
a Gaussian distribution was used to determine the quoted 
uncertainty. The standard uncertainty can then be determined 
by dividing by the appropriate factor given the stated level of 
confidence. Various manufacturers state a level of confidence6 
for product specifications and applying this GUM advice to 
product specifications quoted at a level of confidence is common 
and accepted by various accreditation bodies.

When a manufacturer states a level of confidence for a 
specification, this implies that the end-of-period measurement 
reliability for the specified parameter is at least the quoted level of 
confidence (e.g., 99 %). Claims of high measurement reliability 

are possible given a process for setting specifications designed 
for high manufacturing yields and employing guard bands for 
the reasons discussed in this paper. However, it is important to 
keep two points in mind when relying on a specification stated 
at a level of confidence. First, specification level of confidence 
applies to individual parameters and not to the overall 
measurement reliability of a multi-parameter product. Second, 
a manufacturer cannot guarantee an end-of-period reliability. 
The level of confidence claim can only mean that it is possible 
to achieve the stated end-of-period measurement reliability, 
but the responsibility for ensuring that is with the owner of 
the product. Specifically, the owner must operate the product 
consistent with the assumptions manufactures make regarding 
drift, must calibrate and adjust appropriately, and must monitor 
end-of-period reliability.

Without a statement of level of confidence, or other 
information for a specification, the GUM directs us to use the 
uniform distribution when determining standard uncertainties. 
Yet, doing so is likely a conservative estimate of the uncertainty. 
Regardless, the methods discussed in this paper produce 
product specifications for which high measurement reliability is 
readily attainable by the owner of the product.

10. Conclusions
Manufacturers set specifications on products to enable 

meeting manufacturing cost objectives while providing 
performance demanded by customers. This is accomplished 
by carefully characterizing product performance and relying 
on statistical analysis. The statistical analysis provides 
information that manufacturers publish on product data sheets. 
That information is provided as statements of confidence, 
supplemental data that accompanies the specifications or 
notes and statements applying to specific specifications. This 
information is a benefit to metrologists when using the product 
as a laboratory standard and for estimating overall test system 
accuracy. Regardless of the information provided, product 
specifications set using the methods discussed in this paper 
result in products capable of meeting or exceeding published 
specifications and that are maintainable over the product’s 
useful life.

11. References
[1]  “Guide to the Expression of Uncertainty in Measurement 

(GUM),” BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML, 

International Organization for Standardization (ISO), Geneva, 

Switzerland, 1995. [Available at www.bipm.org/en/publications/

guides/gum.html]

[2]  S.L. Read and T.R.C. Read, “Statistical Issues in Setting Product 

Specifications,” Hewlett-Packard Journal, vol. 39, no. 3, pp. 

6-11, June 1988. [Available at www.hpl.hp.com/hpjournal/pdfs/

IssuePDFs/1988-06.pdf]

[3]  NIST/SEMATECH, “e-Handbook of Statistical Methods,” 

February 16, 2010. [Available at www.itl.nist.gov/div898/

handbook/prc/section2/prc263.htm]

[4]  ILAC-G8:03/2009, “Guidelines on the Reporting of Compliance 

with Specification,” International Laboratory Accreditation 

Cooperation (ILAC), 2009. [Available at www.ilac.org/

guidanceseries.html]

5 See subsection 4.3.4 of the GUM.

6 Level of confidence for a specification is not the same as level of confidence 
for a tolerance interval. When setting test line limits, the confidence level of the 
tolerance interval relates to the risk of the tolerance interval not including the 
desired proportion of a population. Confidence level for a specification relates 
to measurement reliability. 


